Tuesday, September 18, 2007

Himalayan Bio-resources

Business India, June 12-25, 2000
Bouquet of technology blossoms

Can plant biotechnology yield better tea, high value flowers, aromatic plants rich in essential oils and new drug molecules from rare Himalayan plants? Yes, proves the Institute of Himalayan Bioresource Technology (IHGT) at Palampur

Shivanand Kanavi

Englishmen who fancied the hills of Himachal, which reminded them of Scotland, found refuge from the hot Indo-Gangetic plains in cooler climes of Shimla, Dalhousie, Mcleodgunj, Forsythgunj, Barot, and other places. They also brought in tea cultivation to the region. Tea from Kangra Valley was at one time bought at a premium. However, the neglect of the tea gardens by local owners after Independence led to the fall of Kangra tea. Most tea gardens became weed gardens and production touched the nadir of less than 6 lakh kg a year. Today Kangra tea has bounced back the production has gone up in less than 10 years to 1.6 million kg, with the same acreage under cultivation.

The credit goes to a band of scientists at the youngest and one of the smallest CSIR laboratories – IHBT Palampur. They painstakingly educated the growers in the area and introduced proper practices in weeding, pruning, and plucking, and the correct use of pesticides, herbicides, and fertilisers. On the other hand, as concern has grown in export markets about pesticide residues in tea, IHBT has set up an advanced analytical lab for the same.

As growers face labour shortage during several months of the busy plucking season of March-October, the institute has also developed machines, in collaboration with Central Mechanical Engineering Research Institute, Durgapur, for mechanised tea plucking thereby improving productivity 10-20 times. “The machines have found favour with several planters and some companies have bought the design from CSIR and manufacture the same,” says S.D. Ravindranath, head of the tea division at IHBT.

It may not sound very hi-tech, but nevertheless it boosts the local economy. Meanwhile plant biotechnologists at Palampur are also doing cutting-edge work in tea, to genetically alter it. Their aim is to produce a variety, which will sprout in cold climates as well. Since tea goes “dormant” in this region for almost five months a year, additional sprouting for even a month or two more, would be a major boon for the industry.

Himachal provides the ideal agroclimatic conditions for floriculture. “What we did when we took up floriculture as a major thrust area, was to first study the market, to see which
Variety of flowers fetch the maximum value in Delhi market and in which season,” says D. Mukherjee, who heads the floriculture division. As a result, IHBT developed several new varieties of flowers which are commercially attractive to growers. They are also working on producing tulips, gladioli, bird of paradise, lilliums, and others, which will flower off-season, or on a particular day, like Valentine’s Day, Christmas, etc. Today, the floriculture industry in India pays through its nose to buy good planting material from European sources. This makes the work undertaken by Mukherjee and his team all the more important.
Research done at Palampur on plant viruses has led to the recognition of this lab as a major center for plant virus research. This work is particularly important to help floriculturists when their crops are attacked by dreaded viruses.

Another thrust area for the lab, which is having significant impact on the regional economy, is essential oils from aromatic plants, a passion of Paramvirsingh Ahuja, director of the lab. Work in this area has resulted in the release of a Damask Rose (Rosa damascena), a variety rich in rose oil. Oil from this flower can fetch up to Rs.3 lakh per kilo in today’s market. According to Ahuja, the aroma of cash flow is bringing many farmers from not only Himachal but even Punjab, who are tired of growing wheat and basmati rice, with diminishing returns, and who are ready to take new risks.

India is one of the largest producers of essential oils in the world. IHBT, however, is concentrating on two things in this area. One: producing inexpensive designs distilling equipment, so that farmers can themselves put up oil extraction plants. (The natural products group led by V.K. Kaul has already developed and transferred the design of distillation plants to some fabricators. The farmers can now realise higher value, instead of selling bulk material to middlemen.) Two: to develop the technology to farm high-value aromatic plants like lavender, geraniums, etc.

However, what makes this lab a truly Himalayan Bioresource Technology Lab is its focus on the need to identify, preserve, and harness the vast biodiversity of the Himalayas. These mountains, which protect the plains of India form the harsh, cold winds from Tibet, are also recognised the world over as repositories of several important medicinal plants. For example, important anti-cancer drugs are extracted from Himalayan plants like Taxus Picrorhiza kurroa, a plant known for hepato-protective activity, and hypericum, whose anti-AIDS activity has been reported.

These plants are rare to find, difficult to grow, and are facing extinction due to unscrupulous exporters and uncaring pharmaceutical companies. The lab is quietly working on locating areas of concentration of such plants along with the Department of Space and Department of Biotechnology, so that satellite imagery can be used to locate a medicinal plant high up on the mountains. The lab is also developing the technology to “domesticate” such plants so that they can be grown in large quantities in controlled conditions.

“What’s new about this, after all, tissue culture is the answer,” one might ask. But life is not that simple. Many important medicinal plants grow in very severe conditions. In fact, there is a theory that severe conditions induce plants to produce the all-important alkaloids and metaboloids that yield drug molecules. In that case how can we grow them in less severe climates in labs and hothouses and still harvest the same amount of phytochemicals? “It took mankind about 10,000 years to domesticate wild rice and wheat, so we cannot hope to domesticate wild medicinal plants without intensive research and using modern biotechnology,” says Ahuja.

Aware of the wealth hidden in the Himalayas, the lab has a special biodiversity group made up of scientists like Brij Lal and S.K Vats, who wander in remote areas high up in the mountains, which are difficult to access, in search of the rare medicinal plants. Naturally you need to be a good mountain trekker and a naturalist of the 19th century mould – a rare combination indeed. In fact, Brij Lal belongs to a rare breed called ethnobotanists, who specialise not only in being good botanists and taxonomists but who also learn dialects of the tribals, befriend them in remote areas, and tap into their knowledge base of folk medicine. Ethnobotanists collect the plants used by tribals and nomads for medicinal purposes, identify them in modern botanical terms, preserve the plant material in herbaria, and so on. Today CSIR is involved in a major hush-hush programme of tapping India’s vast knowledge base of Ayurveda, Unani, Siddha, and tribal medicine in search of new wonder drugs. IHBT has a key role to play in this due to its knowledge of the Himalayas.

A search by IHBT in the Lahaul-Spiti valley for plants which are able to withstand the cold desert conditions has led to detection and isolation of the gene which makes a plant resistant to cold. According to Manju Sharma, secretary Department of Biotechnology, an international patent has been filed on this discovery.

Clearly, this lean and young lab, perched at the foot of the Dhavaldhar Himalayas, is showing how to use technology, high or low, to greater economic good of the region.

No comments: